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Summary

Human peripheral blood monocytes are a heterogeneous population, includ-
ing CD14+CD16- ‘classical’ monocytes and CD14+CD16+ ‘proinflammatory’
monocytes. CD16+ monocytes are expanded in various inflammatory
conditions. However, little is known about the CD14+CD16+ monocytes in
patients with breast cancer. We detected CD14+CD16+ monocytes in 96
patients with breast cancer and 54 control subjects using flow cytometry.
Receiver-operating characteristic (ROC) curve analysis was used to determine
the feasibility of CD14+CD16+ monocytes as an indicator for diagnosis of
breast cancer. We found that the frequency of CD14+CD16+ monocytes
showed a significantly greater increase in breast cancer patients than in con-
trols (16·96% versus 10·84%, P < 0·0001). The area under the ROC curve for
CD14+CD16+ monocytes was 0·805 [95% confidence interval (95% CI):
0·714–0·877, P = 0·0001]. Furthermore, the levels of CD16+ monocytes were
significantly negatively associated with the tumour size and pathological
staging. In vitro, we showed that CD14+CD16+ monocytes were expanded
significantly when the purified CD14+ monocytes were exposed to Michigan
Cancer Foundation (MCF)-7 cells-conditioned medium (MCF-CM) or, sepa-
rately, to monocyte chemotactic protein 1 (MCP-1). Neutralizing antibodies
against MCP-1 inhibited the expansion of CD14+CD16+ monocytes by MCF-
CM. Collectively, our findings indicated that MCP-1 can expand CD14+CD16+

monocytes in patients with breast cancer. Furthermore, the CD14+CD16+

monocyte may be a useful indicator in early diagnosis of breast cancer.
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Introduction

Breast cancer is by far the most frequent cancer in women
(23% of all cancers), with an estimated 1·15 million new
cases yearly [1]. Despite the improved prognosis for breast
cancer resulting from radical surgery and the development
of adjuvant therapy, early diagnosis of breast cancer still
remains a challenge [2]. It has been proved that an important
function of the immune system is to search for and eliminate
neoplastic cells [3]. Monocytes can differentiate into den-
dritic cells (DCs) and macrophages, and they can be involved
in the anti-tumour response of the host [4]. The CD16
(FcgRIII) molecule was believed initially to be restricted to a
subset of mature macrophages. However, it has also been
found that a subset of circulating monocytes co-express
CD14 and CD16. These CD14+CD16+ monocytes account

for about 10% of all monocytes in healthy people, and their
function is still unclear [5]. A few studies have demonstrated
that CD14+CD16+ monocytes, also called proinflammatory
monocytes, are characterized by the capacity to produce the
proinflammatory cytokine tumour necrosis factor (TNF)-a
[6]. Moreover, they produce little of the anti-inflammatory
cytokine interleukin (IL)-10 in comparison to the main sub-
population of ‘classical’ CD14+CD16- monocytes [7].
CD14+CD16+ monocytes share common features with DCs.
They show a higher potential to differentiate DCs than
regular CD14+CD16- monocytes in a model of transendot-
helial trafficking [8]. CD14+CD16+ monocyte-derived DCs
(CD16+ mDCs) seem to promote T helper type 2 (Th2)
responses preferentially by comparison with CD14+CD16-

mDCs [9,10]. CD14+CD16+ monocytes are elevated in
various inflammatory diseases such as sepsis, asthma and
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coronary artery disease [11–13]. However, to date the
mechanism by which CD14+CD16+ monocytes increase
remains unclear.

Tumours can mimic key features of lymph nodes and
create a tolerant microenvironment, allowing tumours to be
better able to escape from immunological attack. Chemok-
ines are a superfamily of low molecular weight cytokines that
selectively attract and activate different cell types [14]. Many
pathophysiological conditions require the participation of
chemokines, including malignant tumours. Chemokines
play two contradictory roles in tumour immunity activity:
they may enhance innate or specific host anti-tumour
immunity, while they may also favour tumour growth and
metastasis [15]. Monocyte chemoattractant protein-1
(MCP-1) is one of the key chemokines produced by immune
cells, and is over-expressed in breast tumour cells and some
other tumour cells [16,17]. MCP-1 can shift the balance
between host anti-tumour immunity and tumour tolerance
by increasing the presence of harmful tumour-associated
macrophages (TAM) and by inhibiting anti-tumour T cell
activities [17,18]. However, it remains unclear whether these
CD14+CD16+ monocytes are associated with varying and
different levels of risk of cancer. It also remains unclear
whether the level of MCP-1 in co-cultured tumour cells
interferes with monocyte heterogeneity.

In this paper, we report that the frequency of CD14+CD16+

monocytes is increased significantly in the peripheral circu-
lation of breast cancer patients. Receiver-operating charac-
teristic (ROC) curve analysis found that the frequency of
CD14+CD16+ monocytes may be a useful indicator in the
early diagnosis of breast cancer. Moreover, evidence has been
gathered in vitro that the chemokine of MCP-1 can contrib-
ute to the expansion of CD14+CD16+ monocytes in the
tumour microenvironment of breast cancer.

Materials and methods

Patients

Blood specimens were obtained from 96 patients with malig-
nant breast cancer. Prior to participation in this study none
of these patients had received any treatment, such as opera-
tion, chemotherapy, radiotherapy or immunotherapy, and
none of these patients were suffering from any co-existing
diseases that may cause increased levels of CD14+CD16+

monocytes such as rheumatoid arthritis (RA), atherosclero-
sis, haemodialysis, Crohn’s disease, asthma, sepsis, human
immunodeficiency virus (HIV) infection and other infec-
tious diseases. For each of these 96 patients, the diagnosis of
cancer was based on a clinical manifestation and auxiliary
examinations, and the diagnosis was confirmed by postop-
erative pathology. All patients were female and the pathology
was invasive ductal carcinoma. The cancers were staged
according to the tumour–node–metastasis (TNM) classifica-
tion system of the American Joint Committee on Cancer

(AJCC). Fifty-four sex- and age-matched healthy donors
with no diseases as described above served as control
subjects. The study protocol was approved by the Institu-
tional Review Board of Shandong University, and all subjects
gave informed consent.

Cell line culture and conditioned medium preparation

The human mammary gland adenocarcinoma cell line
Michigan Cancer Foundation (MCF)-7 was purchased from
the American Type Culture Collection (ATCC) (ATCC HTR-
22, Manassas, VA, USA). This cell line was grown in an atmo-
sphere of 95% air and 5% CO2 at 37°C in RPMI-1640
medium (Hyclone, Beijing, China) supplemented with heat-
inactivated 10% fetal bovine serum (FBS), 100 units/ml
penicillin and 100 mg/ml streptomycin. The MCF-7 cells-
conditioned medium (MCF-CM) was prepared as described
previously [19]. In outline, cells were seeded at 2 ¥ 106 cells/
75 cm2 and cultivated until 60–70% confluence was reached.
The medium was replaced and the supernatants were har-
vested after 48 h of further incubation.

Monocyte isolation

The use of human peripheral blood monocytes from healthy
donors was approved by the Institutional Review Board of
Shandong University. Peripheral blood mononuclear cells
(PBMCs) were isolated from 50 ml heparinized peripheral
blood using Ficoll-Paque Plus (Sigma-Aldrich, St Louis, MO,
USA). CD14+ cells from PBMCs were enriched with a bead-
labelled anti-CD14 monoclonal antibody (mAb) (Miltenyi
Biotec, Bergisch-Gladbach, Germany) using the magnetic
antibody cell sorting (MACS) system (Miltenyi Biotec). The
purity of CD14+ monocytes was found routinely to be more
than 90% as judged by flow cytometry analysis. The cell
viability of each sample was >95% as determined by trypan
blue dye.

Monocyte culture in vitro

CD14+ monocytes (5 ¥ 105/ml), purified from PBMCs, were
cultured in complete RPMI-1640 (10% FBS, 2·05 mmol/l
l-glutamine, 100 units/ml penicillin and 100 mg/ml strepto-
mycin) with either 25% (volume ratio of MCF-CM and total
volume), 50% or 75% MCF-CM for 24 h in a 12-well plate.
When required, recombinant human (rh)-MCP-1 (0·5 ng/
ml, 10 ng/ml, 100 ng/ml), rh-TNF-a (50 ng/ml), rh-IL-2
(100 units/ml) and rh-osteopontin (OPN) (200 ng/ml) was
added to the culture medium. In another experiment, mono-
cytes were treated with 25% MCF-CM or rh-anti-MCP-1
mAb (5000 ng/ml). Each group of cells then was collected to
determine the level of CD14+CD16+ monocytes by flow
cytometry analysis. The supernatants were collected to
examine cytokine secretion.
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Flow cytometry analysis

Dual-colour immunofluorescence was performed using
fluorescein isothiocyanate (FITC)-conjugated anti-CD14
monoclonal antibody (Becton-Dickinson, Mountain View,
CA, USA) and phycoerythrin (PE)-conjugated anti-CD16
monoclonal antibody (Becton-Dickinson). Isotype controls
were run in parallel with each of our experiments. Blood
specimens were prepared for flow cytometry within 30 min
after venipuncture and red blood cells were lysed with FACS
lysing solution (Becton-Dickinson), then stained by direct
immunofluorescence for FACS analysis. In the in vitro
experiments the monocytes were collected after stimulation
and washed with phosphate-buffered saline (PBS), then
labelled with the corresponding mouse anti-human isotype-
matched control antibodies or CD14 and CD16 monoclonal
antibodies. The samples were acquired on a FACSCalibur
flow cytometer (Becton-Dickinson) and the levels of differ-
ent subsets of monocytes were calculated from the total
CD14+ monocyte population based on CD14 and CD16
expression using CellQuest software (Becton-Dickinson).

Enzyme-linked immunosorbent assay (ELISA)

The MCP-1 protein concentration in the culture superna-
tants, harvested from MCF-7 cells, was measured using the
Quantikine ELISA kit (R&D Systems, Minneapolis, MN,
USA) according to the manufacturer’s instructions. In basic
terms, a mouse mAb specific to MCP-1 was coated onto a
microplate. Standards and samples were added to each well
and incubated for 2 h at room temperature. After washing to
remove unbound proteins, an enzyme-linked polyclonal
antibody specific to MCP-1 was added to the wells and incu-
bated for 2 h at room temperature. Following washing to
remove the unbound antibody–enzyme reagent, the sub-

strate solution was added to the wells and incubated for
30 min at room temperature in the dark. The optical density
(OD) (450 nm) of each sample was determined using a
microplate reader and the mean concentration of MCP-1
was calculated.

Statistical analysis

All the data analyses were performed using the software Sta-
tistical Package for Social Science (spss) version 13·0 for
Windows (SPSS Inc., Chicago, IL, USA). The experimental
data were expressed as mean � standard deviation (s.d.).
Group mean values were compared using one-way analysis
of variance with the Newman–Keuls test. The feasibility of
CD14+CD16+ monocytes as a clinical biomarker for breast
cancer was assessed using ROC curve analysis. Intergroup
comparisons of the clinical and pathological variables were
analysed using a two-tailed c2 test for discrete variables. In
each of the tests, statistically significant results were identi-
fied by P < 0·05.

Results

Increased CD14+CD16+ monocyte frequency in breast
cancer patients

We detected the different monocyte subsets in the peripheral
blood of breast cancer patients (n = 96) and healthy donors
(n = 54) by flow cytometry. Peripheral blood lymphocytes,
monocytes and neutrophils were gated on the basis of
forward- (FSC) and side-scatter (SSC) (Fig. 1a). Monocytes
were confirmed by expression of the CD14 molecule
(Fig. 1b). Most monocytes were CD14+CD16- monocytes;
they expressed CD14 intensely and did not express CD16. A
minor population of monocytes co-expressing CD16 and

Fig. 1. Peripheral blood was stained with

fluorescein isothiocyanate (FITC)-conjugated

anti-CD14 and phycoerythrin (PE)-conjugated

anti-CD16 as described in Materials and

methods. Monocytes were gated on the basis

of the forward scatter and side-scatter dot plot

(a) and identified using CD14 monoclonal

antibodies (mAb) (b). According to the

expression of CD14 and CD16, CD14+

monocytes were subdivided into CD14+CD16-

and CD14+CD16+ subsets. Typical flow

cytometry signals representative of a

healthy subject (c) are shown. (d) The

mean � standard deviation frequency of

CD14+CD16+ monocytes is shown for breast

cancer patients (n = 96) and for healthy subjects

(n = 54). P < 0·0001.
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CD14 were labelled as CD14+CD16+ monocytes (Fig. 1c).
The results show that CD14+CD16+ monocytes exist in the
peripheral blood of both healthy donors and patients with
breast cancer. Furthermore, the frequency of CD14+CD16+

monocytes in patients with breast cancer were increased
significantly by comparison with healthy controls
(16·96 � 7·7%, n = 96 versus 10·84 � 3·6%, n = 54)
(P < 0·0001) (Fig. 1d). The levels of CD14+CD16- monocytes
were not significantly different among cancer and healthy
subjects (data not shown). We also prepared the single cell
suspension of tumour tissues and then detected the
CD14+CD16+ monocytes by flow cytometry. There existed a
considerable proportion of CD14+CD16+ monocytes in
tumour tissues (data not shown). These results demonstrate
that CD14+CD16+ monocytes could be induced and
expanded in breast cancer patients.

ROC curve analyses were carried out to assess the
performance of CD14+CD16+ monocytes in the
diagnosis of breast cancer

ROC curves were used to evaluate the performance of
CD14+CD16+ monocytes in diagnosing breast cancer. The
ROC curve analysis used breast cancers (n = 96) as the end-
point for detection compared with healthy donors (n = 54).
The data showed that the area under the ROC curve (AUC)
was 0·805 (P = 0·0001) for the CD14+CD16+ monocytes
assay (Fig. 2). The sensitivity and specificity of CD14+CD16+

monocytes were analysed using variable cut-off values.

Specifically, when the cut-point (13·31%) was used as the
cut-off value, a sensitivity of 68·7% and specificity of 79·6%
were achieved for the overall samples. This result demon-
strates that the increased level of CD14+CD16+ monocytes
in the peripheral blood may be a useful indicator in early
diagnosis of breast cancer.

The high level of CD14+CD16+ monocytes is related to
the early stage of breast cancer

Correlations between the level of CD14+CD16+ monocytes
and patients’ clinicopathological parameters such as age,
TNM stage, menstruation and hormones were analysed by
two-tailed c2 tests in this study (Table 1). We used the cut-off
value of 13·31% in the ROC curve as the cut-point. As shown
in Table 1, a significant relationship was found between
the CD14+CD16+ monocyte �13·31% group and the
CD14+CD16+ monocyte >13·31% group in respect of
tumour size and pathological staging (P < 0·05). However,
menstruation, lymph node metastasis, oestrogen receptor
(ER), progesterone receptor (PR) and human epidermal
growth factor 2 (HER2) showed no such significant associa-
tion with the level of CD14+CD16+ monocytes. In early-stage
breast cancer patients, especially those with stage I and/or
small tumour size (T1–T2), had high levels of CD14+CD16+

monocytes. The mean level of CD14+CD16+ monocytes was
increased significantly in stage I patients (19·39 � 9·4%)
compared with stages II–IV patients (14·81 � 5·0%)
(Fig. 3). The higher level of CD14+CD16+ monocytes in
early-stage patients suggests that the expanded CD14+CD16+

monocytes may be related to tumorigenesis of breast cancer.

The frequency of CD14+CD16+ monocytes were
increased by MCF-CM

To evaluate the potential reason for the expansion in
CD14+CD16+ monocytes in breast cancer patients, we
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cultured human PBMC-purified CD14+ monocytes in com-
plete RPMI-1640 with, and separately without, 25%, 50% or
75% MCF-CM for 24 h. The flow cytometry analyses results
showed that, compared with the group that was treated with
normal medium, the proportion of CD14+CD16+ monocytes
was increased by almost three times in the presence of 25%
MCF-CM and by almost five times in 50% and 75% MCF-CM
(Fig. 4). These results demonstrate that MCF-CM can expand
significantly the level of CD14+CD16+ monocytes.

CD14+CD16+ monocytes can be expanded by MCP-1

Several cytokines have been reported to induce the expan-
sion of CD14+CD16+ monocytes in vitro and in vivo,
including IL-10, macrophage colony-stimulating factor
(M-CSF) and P-selectin [20–22]. In this study, we inves-
tigated which cytokines would be able to expand
CD14+CD16+ monocytes in patients with breast cancer.
Because the cytokines of TNF-a, IL-2, OPN and MCP-1

Table 1. Clinicopathological characteristics of the patients.

CD14+CD16+

monocytes (%) � 13·31%

(n = 32)

CD14+CD16+

monocytes (%) > 13·31%

(n = 64) P-value

Age (years)

�Median (48 years) 12 (25) 36 (75) 0·083

>Median 20 (41·7) 28 (58·3)

Menstruation

Pre-menopause 14 (26·9) 38 (73·1) 0·148

Post-menopause 18 (40·9) 26 (59·1)

Tumour size

pT1 12 (23·1) 40 (76·9) 0·020

pT2–pT3 20 (45·5) 24 (54·5)

Lymph node metastasis

pN0 20 (30·3) 46 (69·7) 0·350

pN1–pN2 12 (40) 18 (60)

pstage

I 10 (22·7) 34 (77·3) 0·043

II–IV 22 (42·3) 30 (57·7)

Hormone

ER- 12 (30) 28 (70) 0·558

ER+–+++ 20 (35·7) 36 (64·3)

PR- 16 (30·8) 36 (69·2) 0·562

PR+–+++ 16 (36·4) 28 (63·6)

HER2- 20 (37·0) 34 (63·0) 0·383

HER2+–+++ 12 (28·6) 30 (71·4)

Data given as number (%). ER: oestrogen receptor; HER: human epidermal growth factor; PR: progesterone receptor.

Fig. 4. CD14+ monocytes were treated with

normal medium, 25%, 50% and 75% Michigan

Cancer Foundation-conditioned medium

(MCF-CM) for 24 h. Cells were harvested and

the expression of CD14 and CD16 were

analysed by flow cytometry. (a) Flow cytometric

density plots showed the CD14+CD16- and

CD14+CD16+ monocytes subsets after the

monocytes were cultivated in the presence or

absence of 25%, 50% and 75% MCF-CM for

24 h. The values in the density plots are the

percentages of CD14+CD16+ monocytes. (b)

Summary analyses of the percentages of

CD14+CD16+ monocytes in the presence of

25%, 50% and 75% MCF-CM. Data are given

as mean � standard deviation (n = 3).

*P < 0·05.
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were involved in anti-tumour immunity or tumour toler-
ance, we stimulated monocytes with these cytokines and
detected the phenotypic change of the monocytes. As
shown in Fig. 5a, the frequency of CD14+CD16+ monocytes
was increased significantly when stimulated by 100 ng/ml
rh-MCP-1 (P < 0·05), not by other cytokines TNF-a, IL-2
and OPN. Moreover, as shown in Fig. 5b, the effect of
MCP-1 on the frequency of CD14+CD16+ monocytes was
dose-dependent.

We then detected the level of MCP-1 in the supernatant of
monocytes, MCF-CM and in the co-culture supernatant of
monocytes and MCF-CM by ELISA. As shown in Fig. 5c,
MCP-1 in monocytes treated with 25% MCF-CM for 24 h
was raised compared with control (P < 0·05). The anti-
MCP-1 mAb can partly inhibit the increased CD14+CD16+

monocyte frequency by MCF-CM (56·43% versus 43·09%,

P < 0·05) (Fig. 5d and e). These data suggest that MCF-CM
can stimulate monocytes to secret more MCP-1, which may
be one of the reasons why CD14+CD16+ monocytes
increased in patients with breast cancer.

Discussion

Human peripheral blood monocytes are a heterogeneous
population and are divided into two subsets based on the
expression of CD16. In this study, we initially described
the heterogeneity of monocytes in the peripheral blood of
patients with breast cancer by flow cytometry. We found
that the CD14+CD16+ monocyte subpopulation can be
induced and expanded in breast cancer patients. This result
is consistent with the previous report that CD14+CD16+

monocytes were expanded spontaneously in patients
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with metastatic gastrointestinal carcinoma [23]. More
importantly, we showed for the first time that the levels
of CD14+CD16+ monocytes were significantly negatively
associated with tumour size and staging. These results
demonstrate that dynamic changes occur in two distinct
monocyte subset levels in breast cancer patients, and that
stochastic profiling of this monocyte/macrophage system
may hold clinical utility with respect to the diagnosis of
breast cancer.

In patients with metastatic melanoma elevated monocyte
counts are associated with poor survival [24], suggesting a
role for monocytes in the development of cancer. The con-
crete roles of two distinct monocyte subsets in breast cancer
remain unclear. Several studies have demonstrated that
the CD14+CD16+ and CD14+CD16- monocyte subsets
show functional differences in migration, cytokine produc-
tion and differentiation into macrophages or dendritic
cells [25–28]. The homologue population of CD14+CD16+

mouse monocytes migrates preferentially to the salivary
glands, and develops into DCs in vivo [29,30]. The DCs that
are generated from CD14+CD16+ monocytes can induce
CD4+ T cells preferentially to Th2 polarization, and these
DCs may represent a subset of regulatory DCs which can
induce tumour immune tolerance [9,10]. There are also
studies indicating that CD14+CD16+ monocytes are
involved in the tumour immune response [31]. We found
that a considerable proportion of CD14+CD16+ mono-
cytes exist in tumour tissues, so we hypothesized that
CD14+CD16+ monocytes could migrate from peripheral
blood into the tumour site and then differentiate into
regulatory DCs, which could be involved in the immune
tolerance of tumour cells.

Schlitt et al. [12] reported that the increased number
of CD14+CD16+ monocytes is associated with coronary
atherosclerosis. Also, another clinical study [32] has indi-
cated that the peak levels of CD14+CD16- monocytes,
but not those of CD14+CD16+ monocytes, are significantly
negatively associated with the extent of myocardial salvage
in patients with acute myocardial infarction (AMI).
CD14+CD16+ monocytes also correlate with disease progres-
sion in chronic HIV-infected patients [33]. Importantly,
CD14+CD16+ monocytes have the potential role to serve as
an osteoclast precursor marker in inflammatory arthritis
[34]. Therefore, we evaluated the role of CD14+CD16+

monocytes in diagnosing breast cancer and analysed the cor-
relation between the levels of CD14+CD16+ monocytes and
breast cancer patients’ clinicopathological parameters. In the
present study, ROC curves were used to evaluate the perfor-
mance of CD14+CD16+ monocytes in diagnosing breast
cancer, but the data demonstrated that the sensitivity
(68·7%) and the specificity (79·6%) were not very high.
Therefore, measuring the CD14+CD16+ monocyte subset
should be used in combination with other factors. Further-
more, CD14+CD16+ monocytes were significantly negatively
correlated with tumour size and TNM staging in breast

cancer patients. Early-stage (pstage I) patients have higher
rates of CD14+CD16+ monocytes. Overall, these results
suggest that CD14+CD16+ monocytes play a critical role in
tumorigenesis.

It was reported recently that many cytokines, such as
IL-10 and M-CSF, may increase the expression of CD16 in
monocytes [22,23,35–37]. However, it is not clear which
cytokines can regulate the CD14+CD16+ monocytes in
breast cancer patients. Our data from experiments in vitro
show that MCF-CM can stimulate monocytes to secrete
more MCP-1, which can increase CD14+CD16+ mono-
cytes, whereas anti-MCP-1 can inhibit the increase of
CD14+CD16+ monocytes by MCF-CM. Interestingly,
CD14+CD16+ monocytes cannot be restored fully to the
level of the control group of monocytes which do not
stimulate with MCF-CM. This suggests that there are also
other cytokines to regulate monocyte heterogeneity in
the tumour microenvironment. The chemokine MCP-1 has
been shown to be expressed minimally in normal breast
epithelial duct cells, but is expressed extensively in breast
tumour cells. The expression of MCP-1 is associated
strongly with the progression of breast cancer and with the
advanced disease course [17], but the tumour microenvi-
ronment is extremely complex in vivo in cancer patients.
There should be many other cytokines take part in the
regulation of monocytes heterogeneity together with
MCP-1 in the different stage and grade of cancer which
needs further investigation.

Previously, it has been demonstrated that CD14+CD16+

monocytes express high levels of CX3CR1 and low levels
of CD62L and CCR2, the receptor for MCP-1. By contrast,
CD14+CD16- monocytes express high levels of CCR2 [38].
However, our study found that MCP-1 can increase
CD14+CD16+ monocytes. Significantly, this provides very
strong evidence that the role of MCP-1 in CD14+CD16+

monocytes is not dependent on the CCR2 receptor. Future
research should focus on the mechanisms by which MCP-1
increases CD14+CD16+ monocytes.

In summary, our results show that breast cancer patients
have an increased frequency of CD14+CD16+ monocytes
which are related to tumour size and tumour stage. Further-
more, it has been found that MCF-CM stimulates monocytes
to excrete more MCP-1, which is involved in augmenting
CD14+CD16+ monocytes. Our study provides further and
substantial evidence that CD14+CD16+ monocytes should be
considered as a useful indicator for the early diagnosis of
breast cancer.
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